Graphene-based nanomaterials as heterogeneous acid catalysts: a comprehensive perspective.

نویسندگان

  • Bhaskar Garg
  • Tanuja Bisht
  • Yong-Chien Ling
چکیده

Acid catalysis is quite prevalent and probably one of the most routine operations in both industrial processes and research laboratories worldwide. Recently, "graphene", a two dimensional single-layer carbon sheet with hexagonal packed lattice structure, imitative of nanomaterials, has shown great potential as alternative and eco-friendly solid carbocatalyst for a variety of acid-catalyzed reactions. Owing to their exceptional physical, chemical, and mechanical properties, graphene-based nanomaterials (G-NMs) offer highly stable Brønsted acidic sites, high mass transfer, relatively large surface areas, water tolerant character, and convenient recoverability as well as recyclability, whilst retaining high activity in acid-catalyzed chemical reactions. This comprehensive review focuses on the chemistry of G-NMs, including their synthesis, characterization, properties, functionalization, and up-to-date applications in heterogeneous acid catalysis. In line with this, in certain instances readers may find herein some criticisms that should be taken as constructive and would be of value in understanding the scope and limitations of current approaches utilizing graphene and its derivatives for the same.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene-Based Nanomaterials as Efficient Peroxidase Mimetic Catalysts for Biosensing Applications: An Overview.

"Artificial enzymes", a term coined by Breslow for enzyme mimics is an exciting and promising branch of biomimetic chemistry aiming to imitate the general and essential principles of natural enzymes using a variety of alternative materials including heterogeneous catalysts. Peroxidase enzymes represent a large family of oxidoreductases that typically catalyze biological reactions with high subs...

متن کامل

Metal-Free Carbon Nanomaterials Become More Active than Metal Catalysts and Last Longer

Many reactions involve metals, especially noble metals or metal oxides as catalysts. Although metal-based catalysts have been playing a major role in various industrial processes, they still suffer from multiple competitive disadvantages, including their high cost, susceptibility to gas poisoning, and detrimental effects on the environment. Owing to their wide availability, environmental accept...

متن کامل

Antifungal and Antibacterial Properties of Graphene-based Nanomaterials: A Mini-review

In recent years, the availability and use of various antibiotics and antimicrobial agents have resulted in increase of drug resistant pathogens. Therefore, scientist’s attention has been diverted to find a suitable replacement for antimicrobial treatment. Graphene (G), as a two-dimensional (2D) carbon-based nanomaterials (CBNs) has a unique physicochemical properties including thermal, optical ...

متن کامل

Photoelectrochemical Properties of Graphene and Its Derivatives

Graphene and its derivatives combine a numerous range of supreme properties that can be useful in many applications. The purpose of this review is to analyse the photoelectrochemical properties of pristine graphene, graphene oxide (GO) and reduced graphene oxide (rGO) and their impact on semiconductor catalysts/quantum dots. The mechanism that this group of materials follows to improve their pe...

متن کامل

Kinetic Monte Carlo Simulation of Oxalic Acid Ozonationover Lanthanum-based Perovskitesas Catalysts

Kinetic Monte Carlo simulation was applied to investigation of kinetics and mechanism of oxalic acid degradation by direct and heterogeneous catalytic ozonation. La-containing perovskites including LaFeO3, LaNiO3, LaCoO3 and LaMnO3 was studied as catalyst for oxalic acid ozonation. The reaction kinetic mechanisms of each abovementioned catalytic systems has been achieved. The rate constants val...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 19 9  شماره 

صفحات  -

تاریخ انتشار 2014